If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2*2^x+1/4*4^x-320=0
Domain of the equation: 4*4^x!=0Wy multiply elements
x!=0/1
x!=0
x∈R
4x+1/4*4^x-320=0
We multiply all the terms by the denominator
4x*4*4^x-320*4*4^x+1=0
Wy multiply elements
64x^2*4-5120x*4+1=0
Wy multiply elements
256x^2-20480x+1=0
a = 256; b = -20480; c = +1;
Δ = b2-4ac
Δ = -204802-4·256·1
Δ = 419429376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{419429376}=\sqrt{9216*45511}=\sqrt{9216}*\sqrt{45511}=96\sqrt{45511}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20480)-96\sqrt{45511}}{2*256}=\frac{20480-96\sqrt{45511}}{512} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20480)+96\sqrt{45511}}{2*256}=\frac{20480+96\sqrt{45511}}{512} $
| -2x+4(-4x-10)=122 | | 2(2^x)+0.25(4^x)-320=0 | | 2(2^x)+1/4(4^x)-320=0 | | 2-(3x+2)=-38 | | 2=3x+64 | | 3x+5(-x-3)=5 | | 13(9k+3)=−2(k−8) | | x/4-12=14 | | 12x^-3+8x=0 | | 1/4x=3 | | 5g=56 | | 11t+15=5(t-3)+5t | | 14=-v-6v | | 6(x+5)=9(x-4) | | f+9=20 | | −8=(10x−3) | | -10x+4-8x=-28x+6 | | -5r+70=8r+5 | | -2(4x-8)=20 | | -7x+2(3-4x)=29 | | 75c-300=25200 | | -2+7(3x+8)=12 | | 30x=110 | | 8(2y+7)=64 | | 2x-6(7x-11)=-134 | | 5(2x)=12x-3 | | -2k+3-5=4 | | –4h–16h=0 | | 3(x+9)=81 | | 17+19w=5+16w | | -21w+16w=+16+14 | | 2n+5=8n-7 |